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Abstract. We present a new strategy for the constrained global optimization of expensive black

box functions using response surface models. A response surface model is simply a multivariate
approximation of a continuous black box function which is used as a surrogate model for
optimization in situations where function evaluations are computationally expensive. Prior

global optimization methods that utilize response surface models were limited to box-con-
strained problems, but the new method can easily incorporate general nonlinear constraints. In
the proposedmethod, whichwe refer to as theConstrainedOptimization using Response Surfaces

(CORS) Method, the next point for costly function evaluation is chosen to be the one that
minimizes the current response surface model subject to the given constraints and to additional
constraints that the point be of some distance from previously evaluated points. The distance
requirement is allowed to cycle, starting from a high value (global search) and ending with a low

value (local search). The purpose of the constraint is to drive the method towards unexplored
regions of the domain and to prevent the premature convergence of the method to some point
which may not even be a local minimizer of the black box function. The new method can be

shown to converge to the global minimizer of any continuous function on a compact set
regardless of the response surface model that is used. Finally, we considered two particular
implementations of the CORSmethod which utilize a radial basis functionmodel (CORS-RBF)

and applied it on the box-constrained Dixon–Szegö test functions and on a simple nonlinearly
constrained test function. The results indicate that the CORS-RBF algorithms are competitive
with existing global optimization algorithms for costly functions on the box-constrained test

problems. The results also show that the CORS-RBF algorithms are better than other algo-
rithms for constrained global optimization on the nonlinearly constrained test problem.

Key words: Black box function, Costly function, Global optimization, Metamodel, Radial

basis function, Response surface, Surrogate model

1. Introduction and Motivation

Global optimization of continuous black box functions that are costly to
evaluate is a computationally challenging problem in engineering design. A
single simulation performed to evaluate the costly function may require the
solution of large systems of partial differential equations, and hence, may
take a few minutes to many hours depending on the particular application.
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Because of the enormous computational cost involved, an analyst is
typically willing to perform only a small number of function evaluations
when optimizing such costly functions. Our goal, then, is to develop global
optimization algorithms that produce reasonably good solutions with a
very limited number of function evaluations.
We now state our problem in more precise terms. Let D be a compact

subset of Rd and let f : D ! R be a deterministic continuous function. The
global optimization problem (GOP) is to find x� 2 D such that fðx�ÞO fðxÞ
for all x 2 D. Note that under the given conditions, f attains its global
minimum value on D. In this investigation, we would like to focus on
GOPs where f is a black box function that is costly to evaluate. For sim-
plicity, we first assume that the domain D is a hypercube in Rd, i.e. the
problem is box-constrained. Later, in Section 5, we will consider the situa-
tion where D defined by general nonlinear constraints. Furthermore, we
also assume that the derivatives of f are unavailable and finite-difference
approximations are too expensive to perform. Since f is costly to evaluate,
we wish to find a point ~x 2 D such that fð~xÞ is close to minx2D fðxÞ using
only a relatively small number of function evaluations.
There are shortcomings with most of the existing optimization methods

for costly black box functions. Gradient-based algorithms cannot be used
in many cases simply because derivatives are not available and finite-differ-
ence approximations are too expensive to perform. Automatic differentia-
tion techniques sometimes do not produce accurate derivatives because of
truncation error in functions involving the solutions of PDEs or because of
the presence of branching in the code for the black box function (Nocedal
and Wright, 1999). In addition, automatic differentiation cannot be used in
cases where the source code for the objective function is not available. A
simple alternative is to use direct search methods like the simplex reflection
algorithm by Nelder and Mead (1965), the DIRECT method by Jones
et al. (1993), the Parallel Direct Search algorithm by Dennis and Torczon
(1991), or the more general class of pattern search algorithms (Torczon,
1997). Direct search methods are derivative-free optimization methods.
However, they generally require a large number of function evaluations
since they do not take advantage of the inherent smoothness of some
objective functions. Moreover, with the exception of the DIRECT global
optimization method, the direct search methods mentioned above are only
designed to find stationary points. Hence, global optimization will
generally involve several restarts, requiring even more function evaluations.
Finally, heuristic methods like evolutionary algorithms and simulated
annealing also require a very large number of function evaluations to
obtain adequately good solutions for GOPs.
A more practical type of optimization method for computationally expen-

sive functions is one that is based on a response surface model (also known
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as a metamodel or a surrogate model). By a response surface model, we
simply mean a multivariate approximation of the underlying continuous
black box function. The purpose of the response surface model is to serve
as an inexpensive approximation to the costly black box function that can
help identify promising points for costly function evaluation. The most pop-
ular of these methods is traditional response surface methodology (Myers
and Montgomery, 1995; Box and Draper, 1987; Khuri and Cornell, 1987)
which generally involves low-order polynomial regression. Another class of
methods are the derivative-free optimization methods by Powell (1994,
2000, 2002) and by Conn et al. (1997) which utilize multivariate polynomial
interpolation models within a trust-region framework. These methods are
meant for unconstrained optimization problems but they can be easily tai-
lored to deal with box constraints. They are also designed to find stationary
points but they are generally more efficient than direct search methods.
Other response surface methods for costly optimization are those that rely
on kriging models (Jones et al., 1998; Simpson et al., 1998; Booker et al.,
1999; Jones, 2001a) and radial basis functions (Ishikawa and Matsunami,
1997; Ishikawa et al., 1999; Björkman and Holmström, 2000; Gutmann,
2001b).
Response surface methods for optimization operate by maintaining an

approximate model of the underlying function to be optimized. The
approximate model may be local (i.e., restricted to a specific subregion
of D), as in the case of the derivative-free trust-region methods, or it may
be global, as in the EGO method of Jones et al. (1998) or in the radial
basis function method of Gutmann (2001b), or it may be a combination of
both. In the case of methods that utilize a local response surface model,
the region of exploration is periodically shifted and its size adjusted based
on the information provided by newly evaluated points. In the case of
methods that utilize a global response surface model, the global minimum
in the approximate model does not usually correspond to a global mini-
mum of the actual surface. Hence, the approximating global surface is
periodically refitted upon the addition of newly evaluated points. However,
a naive implementation of these methods, where the global minimizer of
the current approximating surface is always selected for function evalua-
tion may converge to some point which may not even be a local minimizer
of the actual function (Gutmann, 2001b; Jones, 2001a).
We will focus our attention on optimization methods that utilize global

response surface models. Jones (1996) proposed a general response surface
method that requires a measure of ‘‘bumpiness’’ for the response surface
model. Suppose x1; . . . ; xn are previously evaluated points in D. In
each iteration of this method, we choose a target value f� which represents
a guess of the global minimum value of the black box function f and the
next evaluation point y is chosen to be one that minimizes the bumpiness
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of a response surface model that interpolates the data points ðx1; fðx1ÞÞ;
. . . ðxn; fðxnÞÞ and the additional data point ðy; f�Þ Gutmann (2001a, b)
found a suitable measure of bumpiness for radial basis
functions and developed a radial basis function method which he
proved converges to the global minimum of any continuous function pro-
vided the target values are selected in a particular manner. Jones et al.
(1998) also developed a kriging-based response surface method called Effi-
cient Global Optimization (EGO) where the next evaluation point is
chosen to be the one that maximizes the expected improvement in the
objective function value. However, it remains a conjecture whether such a
method converges to the global minimum of any continuous function
(Jones et al., 1998).
The methods described in the previous paragraph are limited to box-

constrained problems. In this paper, we introduce a new response surface
method for global optimization which also works on nonlinearly con-
strained problems. We refer to the new method as the Constrained Optimi-
zation using Response Surfaces (CORS) method. In the new method, the
next point for costly function evaluation is chosen to be a point that mini-
mizes the current response surface model subject to the given constraints
that define D and to additional constraints that it should be of some dis-
tance from previously evaluated points. The purpose of the constraint is to
drive the algorithm towards unexplored regions and to prevent the algo-
rithm from prematurely converging to some possibly undesirable point. To
be able to perform both local and global search in this scheme we allow
the distance requirement to cycle between high values (global search) and
low values (local search). Moreover, we also prove that this new method
converges to the global minimum of any continuous function. Finally, we
implemented CORS using a radial basis function model (CORS-RBF) and
applied it on the box-constrained Dixon–Szegö test functions (Dixon and
Szegö, 1978) and on a nonlinearly constrained test function used by Go-
mez and Levy (1982). The results indicate that the CORS-RBF approach is
competitive with existing global optimization methods for costly functions
on the box-constrained problems. The results also show that the CORS-
RBF approach is better than other algorithms for constrained global opti-
mization on the nonlinearly constrained test problem.

2. A New Strategy for Global Optimization using Response Surfaces

2.1. GENERAL FRAMEWORK

We now provide a description of the CORS method for the constrained
global optimization of costly functions using response surfaces. The
new strategy is iterative and, in each iteration, the response surface model
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is updated and exactly one point is selected for costly function evaluation.
The evaluation point is selected to be one that minimizes the current
response surface model subject to the given constraints (as specified by D)
and to some constraints on the distance from previously evaluated points.
The guiding principle behind this method is that the selection of points for
costly function evaluation has the dual goals of: (a) finding new points
that have a low objective function value, and (b) improving the future
response surface model by sampling regions of D for which little informa-
tion exists. Hence, the selection of the next point for costly function evalu-
ation is based on the minimization of current response surface model
subject to constraints on how close the next point evaluated can be to pre-
viously evaluated points. Of course, there is a limit on how far a point can
be from a previously evaluated point. If x1; . . . ; xn are the previously eval-
uated points, then this limit is given by

D ¼ max
~x2D

min
1OjOn

k~x� xjk

Clearly, it makes no sense to require the distance of the next iterate from
the previously evaluated points to be more than this distance, since this is
impossible. Hence, we will require the next evaluation point to be at least
of distance bD from all previously evaluated points, where 0ObO1. A gen-
eral framework for the CORS approach is given below.

Step 1 (Select initial points). Set i :¼1 and select a finite initial set of
points S1 ¼ fx1; . . . ;xkg � D for costly function evaluation.

Step 2 (Do costly function evaluation). Evaluate the function f at the
points in S1 and update the best function value encountered at
every function evaluation.

Step 3 (Iterate). While termination condition is not satisfied do
Step 3.1 (Fit or update response surface). Fit or update a response

surface model f̂i using the data points Di ¼ fðx; fðxÞÞ:
x 2 Sig.

Step 3.2 (Select candidate point). Select the candidate point xkþi
for function evaluation to be a point x that solves the
following constrained optimization problem:

Minimize f̂iðxÞ
Subject to

kx� xjkPbiDi; j ¼ 1; . . . ; kþ i� 1

x 2 D

ð1Þ
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where

Di ¼ max
~x2D

min
1OjOkþi�1

k~x� xjk ð2Þ

and 0ObiO1 is a parameter to be set by the user (see discus-
sion below for details).

Step 3.3 (Do costly function evaluation). Evaluate the function f at xkþi
and update the best function value encountered so far.

Step 3.4 (Update information). Siþ1 :¼ Si [ fxkþig;Diþ1 :¼ Di [ fðxkþi;
fðxkþiÞÞg.
Reset i :¼ iþ 1.

End.

In the above notation, k is the number of initial evaluation points, i
denotes the iteration number, Si is the set of previously evaluated points in
iteration i, and f̂i is the response surface model in iteration i. The parame-
ters bi are set by performing cycles of Nþ 1 iterations where each cycle
employs a range of values for bi, starting with a high value close to 1 (glo-
bal search) and ending with bi ¼ 0 (local search). More precisely,
bi ¼ biþNþ1 for all iP1 and 1Pb1Pb2P � � �PbNþ1 ¼ 0. We refer to N as
the cycle length and we refer to the sequence hb1; b2; . . . ;bNþ1 ¼ 0i as the
search pattern. We also refer to the constrained minimization problem (1)
in Step 3.2 as the CORS auxiliary problem (CORS-AP) or simply the auxil-
iary problem.
For simplicity in the discussion below, we use the term maximin point to

refer to the point in D which is as far away as possible from any previously
evaluated point. The expression Di in (2) represents the distance of the
maximin point from the closest previously evaluated point. In iteration i,
we are requiring the candidate evaluation point to be of distance at least
biDi from the closest previously evaluated point. Solving the auxiliary
problem with bi ¼ 1 is equivalent to finding a maximin point. On the other
hand, solving the auxiliary problem with bi ¼ 0 is equivalent to simply

minimizing f̂i over D. A search pattern of the form h0i represents pure
greedy search whereas a search pattern of the form h1i represents pure
exploratory search. A search pattern that includes a range of values
between 0 and 1 such as h0:90; 0:75; 0:25; 0:05; 0:03; 0i balances global and
local search and is generally more desirable than the extremes of pure
greedy and pure exploratory search.
In any implementation of the CORS method, we have stipulated that the

end of a search pattern be 0. The purpose of this requirement is to ensure
that we are doing the most natural thing of minimizing the response sur-
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face model subject to the constraints in D every Nþ 1 iterations. Note that
the user may specify a search pattern with more zeros. In fact, we can even
do a search pattern with all zeros (pure greedy search). However, such a
procedure is not recommended since it is prone to prematurely converging
to a point that may not even be a local minimizer of the original function
fðxÞ (Gutmann, 2001b; Jones, 2001a, b). This happens when the minimizer
of f̂i, in D (which is the next evaluation point) is a previously evaluated
point. We address this issue below (in Section 2.2).
As we will see later in Section 3, the minimization of f̂i in each iteration

is not really necessary for the convergence of the method to a global mini-
mum point. What is more important is that the candidate point for costly
function evaluation satisfies the constraint in Step 3.2 above for some
strictly positive bi for infinitely many i. In addition, the requirement that
each search pattern is a nonincreasing finite sequence ending with 0 is also
not necessary for convergence. Rather these requirements are simply heu-
ristics that are meant to speed up the process of finding a global minimum
point for the original objective function. In fact, the only requirement for
convergence is to have a search pattern with at least one nonzero entry.

2.2. IMPLEMENTATION ISSUES

Any algorithm twidehat follows the CORS framework requires two compo-
nents: (a) a scheme for selecting an initial set of points for costly function
evaluation, and (b) a procedure for globally approximating the unknown
costly black box function in any iteration (i.e. a response surface model).
The first component can be provided by various experimental design tech-
niques ranging from simple grids to Latin hypercubes (McKay et al., 1979)
and orthogonal arrays. The paper by Koehler and Owen (1996) describes
various experimental design techniques. For the second component, we can
use various multivariate approximation schemes including polynomial
regression, kriging (Sacks et al., 1989; Cressie, 1993), radial basis functions
(Powell, 1992, 1999), multivariate adaptive regression splines (Friedman,
1991), and neural networks. As will be seen below, the main convergence
result for the CORS method does not depend on either the initial evaluation
points or on the particular response surface model being used.
Another important issue is the computation of Di as defined in (2). Gut-

mann (2001a) showed that, in the case where D is defined by box con-
straints, the computation of Di may be converted into a concave
minimization problem and may be solved via an outer approximation algo-
rithm as described in Horst et al. (1995). In practice, we can approximately
solve (2) by maintaining a set of points that ‘‘cover’’ D (i.e. that are spread
all throughout DÞ and selecting the farthest from any previously evaluated
points.
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Note that the auxiliary optimization problem described above (in Step
3.2) is generally nonconvex. Fortunately, its objective function and its con-
straint functions are cheap to evaluate. Moreover, the gradients of the
objective function and constraint functions of the auxiliary problem are
also easy to obtain and evaluate. Hence, we can take advantage of state-
of-the-art software for gradient-based optimization to solve the auxiliary
problem. Since the problem is nonconvex, there is no guarantee of finding
a global minimizer for the auxiliary problem. Hence, we typically perform
several runs of a nonlinear programming (NLP) solver with different start-
ing points and the evaluation point is selected to be the local minimizer
that has the lowest function value among the local minimizers that were
obtained. Another option is to run a global optimization method such as
Constrained DIRECT (Jones, 2001b) and refine its solution by starting a
NLP solver from that point.
One problem that arises when using the CORS method is that it could

happen that the best local minimizer for the auxiliary problem (i.e. the can-
didate evaluation point) in some iteration is a previously evaluated point.
Note that this can only occur if bi ¼ 0. When it does occur, we simply
reset bi ¼ 0:01 and solve the resulting auxiliary problem.

3. Convergence

Let D � Rd be compact and let f : D ! R be a continuous function. Also, let
A be an optimization algorithm whose sequence of iterates is fxkgkP1. We
say that A converges to the global minimum of f if min1OiOk f
ðxiÞ # minx2D fðxÞ as k " 1. Our starting point is the following theorem:

THEOREM 1 (Torn and Zilinskas, 1989). Let D be a compact set. Then an
algorithm converges to the global minimum of every continuous function on
D if and only if its sequence of iterates is everywhere dense in D.

To prove the convergence of the new method, Theorem 1 states that we
only need to ensure that the sequence of trial points is dense in D. Below
is our result that naturally leads to a proof of the convergence of the
CORS method.

THEOREM 2. Let D be a compact set and let fxkgkP1 � Rd be the
sequence of iterates generated by an algorithm A. Suppose there exists a
strictly increasing sequence fntgtP1 of positive integers such that Xnt satisfies
the following condition for some 0 < aO1:

min
1OkOnt�1

kxnt � xkkPamax
y2D

min
1OkOnt�1

ky� xkk 8tP1; ð3Þ

then A converges to the global minimum of any continuous function on D.
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Proof. Define the sequence fstgtP1 by

st ¼ min
1OkOnt�1

kxnt � xkk: ð4Þ

Suppose fxkg is not dense in D. Then there exists �x 2 D and d > 0 such
that the open ball centered at �x with radius d does not contain any element
of the sequence fxkg. This implies that

k�x� xkkPd 8kP1; ð5Þ

and so, from (3)–(5)

stPamax
y2D

min
1OkOnt�1

ky� xkkPad > 0 8tP1

Let ad ¼ �. Since stP� for all tP1, we have kxni � xnjkP� for any i > j. Since
D is compact, it follows that it is bounded. Let B be a hypercube that con-
tains D whose side length is r�=ð2

ffiffiffi

d
p
Þ for some positive integer r. Partition B

into rd equal-sized hypercubes where each hypercube has side length �=ð2
ffiffiffi

d
p
Þ.

Now the condition on fxntgtP1 implies that no two of these points can belong
to a single sub-hypercube. But this is a contradiction since fxntgtP1 is an infi-
nite set of distinct points. Thus, fxkgkP1 must be dense in D. (

COROLLARY 3. Any CORS method where the search pattern contains at
least one nonzero entry converges to the global minimum of any continuous
function for any choice of response surface model and for any choice of initial
evaluation points.

Proof. Let N be the cycle length. Suppose the jth entry of the search pat-
tern is nonzero. Let nt ¼ jþ ðt� 1ÞðNþ 1Þ for all tP1. By assumption, we
have bnt ¼ a > 0 for all tP1. Now the constraints in Step 3.2 of Section
2.1 show that the candidate evaluation point satisfies condition (3)
above. (

The advantage of this result is that it is independent of the choice of the
initial evaluation points and it is also independent of the particular
response surface model that is being used. In fact, it is not even necessary
that we solve the auxiliary optimization problem in Step 3.2 above in order
to guarantee the convergence of the method. All we need is that the candi-
date point for function evaluation satisfy the constraints in Step 3.2. How-
ever, for practical purposes, it should be intuitively clear that the rate of
convergence is somehow dependent on how well the response surface
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model approximates the underlying costly function and also on how well
we are solving the CORS-AP in Step 3.2.

4. Computational Experiments

4.1. DESCRIPTION

To test the performance of the CORS method, computational experiments
were performed on some benchmark box-constrained test functions using a
radial basis function model initialized using the corners of each hypercube
domain. We refer to the resulting CORS method as CORS-RBF. The new
algorithm was tested on the Dixon–Szegö test functions (Dixon and Szegö,
1978) for global optimization. These functions are not really costly to eval-
uate but their shapes are complex and multimodal, and hence, the relative
performance of algorithms on these test functions is expected to mimic per-
formance on costly functions. Table 1 shows the characteristics of the
Dixon-Szegö test functions. The actual functional expressions can be found
in Dixon and Szegö (1978).
To assess the significance of the proposed method, it is necessary to

compare its performance against the existing derivative-free methods for
the global optimization of costly functions. Our new method was compared
with the RBF method developed by Gutmann as implemented by
Gutmann (2001b) and as implemented by Björkman and Holmström
(2000), the EGO method by Jones et al. (1998), and the DIRECT method
by Jones et al. (1993). The performance of the different methods were com-
pared on the Dixon–Szegö test functions.

4.2. RADIAL BASIS FUNCTION MODEL

We now discuss the response surface model that was used in our imple-
mentation of the CORS method. The interpolation model that will be
described below was extensively studied by Powell (1992, 1999) and was
used as the basis of the RBF method by Gutmann (2001b).

Table 1. The Dixon–Szegö test functions (Dixon and Szego, 1978)

Test function Dimension Domain No. of local min No. of global min Global min value

Branin 2 [)5, 10] � [0, 15]3 3 0.398

Goldstein–Price 2 [)2, 2]2 4 1 3

Hartman3 3 [0, 1]3 4 1 )3.86
Shekel5 4 [0, 10]4 5 1 )10.1532
Shekel7 4 [0,10]4 7 1 )10.4029
Shekel10 4 [0, 10]4 10 1 )10.5364
Hartman6 6 [0, 1]6 4 1 )3.32
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Assume that we are given n distinct points x1; . . . ;xn 2 Rd where the
function values are known. In this method, we use an interpolant of the
form

sðxÞ ¼
X

n

i¼1
ki/ðkx� xikÞ þ pðxÞ; x 2 Rd ð6Þ

where k � k is the Euclidean norm in Rd, ki 2 R for i ¼ 1; . . . ; n; p is in Pd
m

(the space of polynomials in d variables of degree less than or equal to m),
and / is one of the following forms:

/ðrÞ ¼ r ðlinearÞ;
/ðrÞ ¼ r3 ðcubicÞ;
/ðrÞ ¼ r2 log r ðthin plate splineÞ;
/ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p

ðmultiquadricÞ;
/ðrÞ ¼ e�cr2 ðGaussianÞ;

where c is a positive constant.
Fix /. Define the matrix U 2 Rn�n by:

ðUÞij :¼ /ðkxi � xjkÞ; i; j ¼ 1; . . . ; n:

Moreover, define

m/ ¼
�1 if / is Gaussian

0 if / is linear or multiquadric

1 if / is cubic or the thin plate spline

8

<

:

and let mPm/. Let m̂ be the dimension of the linear space Pd
m, let

p1; . . . ; pm̂, be a basis of this linear space, and define the matrix P as fol-
lows:

P ¼
p1ðx1Þ . . . pm̂ðx1Þ

..

. ..
.

p1ðxnÞ . . . pm̂ðxnÞ

0

B

@

1

C

A

:

In this model, the RBF that interpolates the points ðx1; fðx1ÞÞ;
. . . ; ðxn; fðxnÞÞ is obtained by solving the system
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U P
PT 0

� �

k
c

� �

¼ F
0m̂

� �

;

where F ¼ ðfðx1ÞÞ; . . . ; fðxnÞÞT, k ¼ ðk1; . . . ; knÞT 2 Rn and c ¼
ðc1; . . . ; cm̂ÞT 2 Rm̂. Powell (1992) showed that the matrix

A ¼ U P
PT 0

� �

2 Rðnþm̂Þ�ðnþm̂Þ

is nonsingular if and only if x1; . . . ; xn satisfy the property:

q 2 Pd
m and qðxiÞ ¼ 0; i ¼ 1; . . . ; n; ) q � 0:

Hence, in this case, the resulting RBF interpolant sðxÞ is unique.

4.3. EXPERIMENTAL SETUP

Two implementations of the CORS-RBF algorithm with different search
patterns were applied to each of the Dixon–Szegö test functions. We used
a particular radial basis function model of the form (6) where / is a thin
plate spline and pðxÞ is a linear polynomial. The initial evaluation points
were chosen to be the corners of the hypercube domain of each test func-
tion. The reason for these choices of response surface model and initial
evaluation points is that these were the ones used by Gutmann (2001b) in
his computational experiments with his RBF method. It is necessary to
achieve fair comparison with Gutmann’s method since it is among the
most recent methods proposed for the global optimization of costly func-
tions. For the implementations of CORS-RBF we used a cycle length of 4
with a search pattern of SP1 ¼ h0:95; 0:25; 0:05; 0:03; 0i and a slightly
longer cycle of length 5 with a search pattern of
SP2 ¼ h0:9; 0:75; 0:25; 0:05; 0:03; 0i. The high values for the parameter bi

are responsible for the global aspect of the search while the low values are
responsible for local search. Values of bi that are close to 0 are essential
for the success of the method since these allow the algorithm to explore
points near the vicinity of some good previously evaluated points. Finally,
we also adopted a strategy used by Gutmann (2001b) of replacing large
function values by the median of all available function values. The purpose
of this transformation is to prevent oscillations in the RBF interpolant that
are due to the large differences in function values.
In solving the auxiliary problem in Step 3.2 of the algorithm, we need to

compute the maximin distance. As noted earlier, we could convert this into
a concave minimization problem and solve it using an outer approximation
algorithm. In this investigation, we solved this problem approximately by
maintaining a set of points in a relatively fine grid that ‘‘covers’’ the entire
hypercube domain. We shall refer to these set of points as cover points.
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Before the first iteration, after we have specified the initial evaluation
points, we determine the distance between each cover point and each initial
evaluation point. For each cover point, we compute its minimum distance
from the initial evaluation points. We store these minimum distances in a
vector of length equal to the number of cover points. Then in each itera-
tion, we compute the distances between the newly evaluated point and the
cover points and update the vector of minimum distances. Note that the
vector of minimum distances allows us to obtain an approximate maximin
point by simply selecting the cover point whose distance is as far away as
possible from previously evaluated points. This estimate of the maximin
point is further refined by performing a local greedy search starting at the
current approximate maximin point.
Once we have an estimate of the maximin distance, we solve the auxil-

iary problem using the DIRECT global optimization method (Jones et al.,
1993; Jones, 2001b). The solution obtained by DIRECT is refined by start-
ing a NLP solver from that point. Moreover, we also run the NLP solver
from multiple randomly generated starting points near the vicinity of the
solution found by DIRECT. Note that most NLP solvers will work with
infeasible starting points so it is not a problem if a starting point violates
some of the distance constraints. The best solution obtained in any of these
optimization runs is taken to be the solution to the auxiliary problem.
Note that there is no guarantee that we are really finding an optimal solu-
tion to the auxiliary problem.
However, recall that the convergence result only requires that each iter-

ate satisfy the constraint in the auxiliary problem. Hence, any method that
only approximately solves the auxiliary problem will still converge to the
global minimum point.
All numerical computations were performed in Matlab R13. The auxil-

iary problems were solved using the glcFast (for bi 6¼ 0) and glbFast (for
bi ¼ 0) routines of Tomlab (Holmström, 1999) which implement DIRECT
(Jones et al., 1993) and Constrained DIRECT (Jones, 2001b), respectively.
The NLP solver used is the fmincon subroutine of the Matlab Optimiza-
tion Toolbox (2000). For efficient optimization using fmincon, we supplied
the gradients of the RBF model and the distance constraints since these
were easy to compute.

4.4. RESULTS

In Table 2, we recorded the number of function evaluations performed by
each of the CORS-RBF methods to get a relative error of <1% for each
test function. If f � is the global minimum value and fbest is the best value
obtained by an algorithm, then the relative error is given by jfbest � f �j=jf �j
provided that f � 6¼ 0. For comparison purposes, we included the results of
the radial basis function method by Gutmann (2001a, b) as implemented
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by Gutmann (2001b) (RBF-G) and as implemented by Björkman and
Holmström (2000) (rbf Solve). Björkman and Holmström (2000) experi-
mented with several variations of how to implement Gutmann’s RBF
method. We only report their most successful result where / is cubic, the
search space was transformed to the unit hypercube, and large function
values were replaced by the median of all available function values. They
did not have much success with the case where / is a thin plate spline with
some runs being terminated before getting a solution with relative error
<1%. We also included the results of the EGO method by Jones et al.
(1998), and the DIRECT method by Jones et al. (1993) as presented in
Gutmann’s paper.
The results on Table 2 indicate that CORS-RBF (SP1) is consistently

better than RBF-G on all Dixon–Szegö test functions except on Shekell0
where the two algorithms have the same performance. The results for
CORS-RBF (SP2) are consistently worse than those for CORS-RBF (SP1)
except on Hartman6 where CORS-RBF (SP2) is slightly better than
CORS-RBF (SP1). However, CORS-RBF (SP2) is very much competitive
with RBF-G. It is better than RBF-G on the Branin, Shekel5, Shekel7,
and Hartman6 test functions and it is worse than RBF-G on the Hartman3
and Shekell0 test functions. On the Goldstein–Price test function, the per-
formance of CORS-RBF (SP2) is only slightly worse than RBF-G.
The CORS-RBF algorithms are not as good as rbfSolve on the Branin,

Goldstein–Price and Hartman6 test functions. However, it is much better
than rbfSolve on the Shekel5, Shekel7 and Shekel10 test functions. More-
over, CORS-RBF (SP1) is competitive with rbfSolve on the Hartman3 test
function. The CORS-RBF algorithms are also consistently much better
than DIRECT on all of the Dixon–Szegö test functions. EGO is better
than the CORS-RBF algorithms on the Branin and Goldstein–Price test
functions. However, CORS-RBF (SP1) is much better than EGO on
Hartman3. Moreover, for the higher dimensional Hartman6 test function,
we see that the CORS-RBF methods are better than EGO. These results
demonstrate the potential of the CORS-RBF method for computationally

Table 2. Comparison of global optimization algorithms on the Dixon–Szegö test functions

Test function CORS-RBF (SP1) CORS-RBF (SP2) RBF-G rbfSolve DIRECT EGO

Branin 34 40 44 26 63 28

Goldstein–Price 49 64 63 27 101 32

Hartman3 25 61 43 22 83 35

Shekel5 41 52 76 96 103 –

Shekel7 46 64 76 72 97 –

Shekel10 51 64 51 76 97 –

Hartman6 108 104 112 87 213 121

The values in the table indicate the number of function evaluations to get a relative error of <1%.
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expensive real-world optimization problems. The CORS-RBF method is
also attractive for practitioners in the sense that it is based on simpler
ideas, it is easier to code than either the EGO method and Gutmann’s
RBF method, and yet it achieves comparable results.

5. Extension to Nonlinearly Constrained Global Optimization

While the paper has focused on box-constrained global optimization (i.e. D
is defined by box constraints), the CORS method is easily extended to han-
dle nonlinear constraints. The method still works in the general case where
D is defined by nonlinear constraints provided D remains compact and the
auxiliary problem in Step 3.2 is tractable. Moreover, the proof of conver-
gence only requires that D be compact, and so, it also holds in the general
case.
In the implementation of CORS for a nonlinearly constrained GOP, one

has to be careful in making sure that the initial evaluation points all satisfy
the constraints. One has to construct a space-filling design whose points all
lie in the domain D. Moreover, the maximin point computed in Step 3.2
(Section 2.1) of the algorithm must be in D (i.e. it must satisfy the nonlin-
ear constraints). In our implementation, we find an approximate maximin
point by choosing a feasible cover point (i.e. a cover point satisfying the
nonlinear constraints specified by D which is as far away as possible from
previously evaluated points.
The procedure for solving the auxiliary problem will depend on what

kind of constraints define D. Note that in a real problem, there are con-
straints whose violation will result in an undefined objective function value
(e.g., some input values will cause the simulation that computes the objec-
tive function value to crash). We shall refer to these constraints as hard
constraints. If D is defined by hard constraints, then we have to use feasible
algorithms (i.e. algorithms that do not step on infeasible territory) to solve
CORS-AP. For simplicity, we assume in this investigation that there are
no hard constraints in D. Moreover, we assume that D is defined by con-
straint functions that are computationally cheap to evaluate. In this situa-
tion, we proceed in the same manner as before and solve the auxiliary
problem using Constrained DIRECT followed by a refinement of the solu-
tion by starting a NLP solver at that point.
Finally, fitting the response surface model is not much harder in the

nonlinearly constrained case since we simply fit the model as though the
constraints were absent. While fitting a response surface model over infea-
sible territory (i.e. over regions outside of D) may sound absurd, this
should be alright as long as the response surface model still provides a
good approximation over the feasible region.
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To illustrate how the method works on a simple constrained problem,
we have applied CORS-RBF to the ‘‘Gomez #3’’ problem that was used
by Gomez and Levy (1982) to test a tunneling algorithm and subsequently
used by Jones (2001b) to test his Constrained DIRECT algorithm. The
problem formulation is as follows:

Minimize 4� 2:1x21 þ
x41
3

� �

x21 þ x1x2 þ ð�4þ 4x22Þx22

subject to

� sinð4px1Þ þ 2 sin2ð2px2ÞO0 � 1Ox1;x2O1

The optimal solution to this problem is (0.109, �0.623) with an objective
value of �0.9711. Note twidehat for this problem, the corners of the box
defined by the upper and lower bounds on x1 and x2 are all feasible so we
implemented CORS-RBF using these points as the initial evaluation
points.
The results for different algorithms are summarized in Table 3. The val-

ues in the second column represent the number of function evaluations
required by an algorithm to get a relative error of <1%. The results for
CORS-RBF are very encouraging and are much better than those obtained
by the Tunneling Algorithm and the Constrained DIRECT algorithm. Of
course, we would need to explore the algorithm’s performance on a more
comprehensive set of constrained test problems before we could say any-
thing conclusive about its performance when constraints are added. But
the simple example just presented, combined with the results on the box-
constrained Dixon–Szegö test problems, suggest that this performance will
be quite good.

6. Conclusions

We have introduced the CORS method which is a new strategy for the con-
strained global optimization of costly functions. We have shown that the

Table 3. Comparison of global optimization algorithms on the Gomez # 6 problem

Method No. of evaluations

Tunneling algorithm (Gomez and Levy, 1982) 1053

Constrained DIRECT (Jones, 2001b) 89

CORS-RBF (SP1) 53

CORS-RBF (SP2) 30

The values in the table indicate the number of function evaluations to get a relative error of <1%.
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method converges to the global minimizer of any continuous function
defined on a compact set. Moreover, this convergence result is independent
of the particular response surface model being used and it is also indepen-
dent of the choice of the initial evaluation points. Finally, computational
experiments using radial basis functions indicate that CORS-RBF is a
promising approach for constrained global optimization. CORS-RBF meth-
ods are competitive with existing global optimization methods for costly
functions on the box-constrained Dixon–Szegö test problems and they are
better than other methods on a nonlinearly constrained test problem.
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